可转移的对抗性攻击优化了从验证的替代模型和已知标签空间中的对手,以欺骗未知的黑盒模型。因此,这些攻击受到有效的替代模型的可用性受到限制。在这项工作中,我们放宽了这一假设,并提出了对抗像素的恢复,作为一种自制的替代方案,可以在无标签和很少的数据样本的条件下从头开始训练有效的替代模型。我们的培训方法是基于一个最小目标的目标,该目标通过对抗目标减少过度拟合,从而为更概括的替代模型进行了优化。我们提出的攻击是对对抗性像素恢复的补充,并且独立于任何特定任务目标,因为它可以以自我监督的方式启动。我们成功地证明了我们对视觉变压器方法的对抗性可传递性以及卷积神经网络,用于分类,对象检测和视频分割的任务。我们的代码和预培训的代理模型可在以下网址找到:https://github.com/hashmatshadab/apr
translated by 谷歌翻译
合奏学习结合了几个单独的模型,以获得更好的概括性能。目前,与浅层或传统模型相比,深度学习体系结构表现更好。深度合奏学习模型结合了深度学习模型以及整体学习的优势,使最终模型具有更好的概括性能。本文回顾了最先进的深度合奏模型,因此是研究人员的广泛摘要。合奏模型广泛地分类为包装,增强,堆叠,基于负相关的深度合奏模型,显式/隐式合奏,同质/异质合奏,基于决策融合策略的深层集合模型。还简要讨论了在不同领域中深层集成模型的应用。最后,我们以一些潜在的未来研究方向结束了本文。
translated by 谷歌翻译
Designing experiments often requires balancing between learning about the true treatment effects and earning from allocating more samples to the superior treatment. While optimal algorithms for the Multi-Armed Bandit Problem (MABP) provide allocation policies that optimally balance learning and earning, they tend to be computationally expensive. The Gittins Index (GI) is a solution to the MABP that can simultaneously attain optimality and computationally efficiency goals, and it has been recently used in experiments with Bernoulli and Gaussian rewards. For the first time, we present a modification of the GI rule that can be used in experiments with exponentially-distributed rewards. We report its performance in simulated 2- armed and 3-armed experiments. Compared to traditional non-adaptive designs, our novel GI modified design shows operating characteristics comparable in learning (e.g. statistical power) but substantially better in earning (e.g. direct benefits). This illustrates the potential that designs using a GI approach to allocate participants have to improve participant benefits, increase efficiencies, and reduce experimental costs in adaptive multi-armed experiments with exponential rewards.
translated by 谷歌翻译
Kernels are efficient in representing nonlocal dependence and they are widely used to design operators between function spaces. Thus, learning kernels in operators from data is an inverse problem of general interest. Due to the nonlocal dependence, the inverse problem can be severely ill-posed with a data-dependent singular inversion operator. The Bayesian approach overcomes the ill-posedness through a non-degenerate prior. However, a fixed non-degenerate prior leads to a divergent posterior mean when the observation noise becomes small, if the data induces a perturbation in the eigenspace of zero eigenvalues of the inversion operator. We introduce a data-adaptive prior to achieve a stable posterior whose mean always has a small noise limit. The data-adaptive prior's covariance is the inversion operator with a hyper-parameter selected adaptive to data by the L-curve method. Furthermore, we provide a detailed analysis on the computational practice of the data-adaptive prior, and demonstrate it on Toeplitz matrices and integral operators. Numerical tests show that a fixed prior can lead to a divergent posterior mean in the presence of any of the four types of errors: discretization error, model error, partial observation and wrong noise assumption. In contrast, the data-adaptive prior always attains posterior means with small noise limits.
translated by 谷歌翻译
In the Earth's magnetosphere, there are fewer than a dozen dedicated probes beyond low-Earth orbit making in-situ observations at any given time. As a result, we poorly understand its global structure and evolution, the mechanisms of its main activity processes, magnetic storms, and substorms. New Artificial Intelligence (AI) methods, including machine learning, data mining, and data assimilation, as well as new AI-enabled missions will need to be developed to meet this Sparse Data challenge.
translated by 谷歌翻译
Machine learning (ML) models are nowadays used in complex applications in various domains, such as medicine, bioinformatics, and other sciences. Due to their black box nature, however, it may sometimes be hard to understand and trust the results they provide. This has increased the demand for reliable visualization tools related to enhancing trust in ML models, which has become a prominent topic of research in the visualization community over the past decades. To provide an overview and present the frontiers of current research on the topic, we present a State-of-the-Art Report (STAR) on enhancing trust in ML models with the use of interactive visualization. We define and describe the background of the topic, introduce a categorization for visualization techniques that aim to accomplish this goal, and discuss insights and opportunities for future research directions. Among our contributions is a categorization of trust against different facets of interactive ML, expanded and improved from previous research. Our results are investigated from different analytical perspectives: (a) providing a statistical overview, (b) summarizing key findings, (c) performing topic analyses, and (d) exploring the data sets used in the individual papers, all with the support of an interactive web-based survey browser. We intend this survey to be beneficial for visualization researchers whose interests involve making ML models more trustworthy, as well as researchers and practitioners from other disciplines in their search for effective visualization techniques suitable for solving their tasks with confidence and conveying meaning to their data.
translated by 谷歌翻译
Language Models appear to perform poorly on quantification. We ask how badly. 'Few'-type quantifiers, as in 'few children like vegetables' might pose a particular challenge for Language Models, since the sentence components without the quantifier are likely to co-occur, and because 'few'-type quantifiers are rare. We present 960 sentences stimuli from two human neurolinguistic experiments to 22 autoregressive transformer models of differing sizes. Not only do the models perform poorly on 'few'-type quantifiers, but overall the larger the model, the worse its performance. We interpret this inverse scaling as suggesting that larger models increasingly reflect online rather than offline human processing, and argue that decreasing performance of larger models may challenge uses of Language Models as the basis for Natural Language Systems.
translated by 谷歌翻译
In this work, we give efficient algorithms for privately estimating a Gaussian distribution in both pure and approximate differential privacy (DP) models with optimal dependence on the dimension in the sample complexity. In the pure DP setting, we give an efficient algorithm that estimates an unknown $d$-dimensional Gaussian distribution up to an arbitrary tiny total variation error using $\widetilde{O}(d^2 \log \kappa)$ samples while tolerating a constant fraction of adversarial outliers. Here, $\kappa$ is the condition number of the target covariance matrix. The sample bound matches best non-private estimators in the dependence on the dimension (up to a polylogarithmic factor). We prove a new lower bound on differentially private covariance estimation to show that the dependence on the condition number $\kappa$ in the above sample bound is also tight. Prior to our work, only identifiability results (yielding inefficient super-polynomial time algorithms) were known for the problem. In the approximate DP setting, we give an efficient algorithm to estimate an unknown Gaussian distribution up to an arbitrarily tiny total variation error using $\widetilde{O}(d^2)$ samples while tolerating a constant fraction of adversarial outliers. Prior to our work, all efficient approximate DP algorithms incurred a super-quadratic sample cost or were not outlier-robust. For the special case of mean estimation, our algorithm achieves the optimal sample complexity of $\widetilde O(d)$, improving on a $\widetilde O(d^{1.5})$ bound from prior work. Our pure DP algorithm relies on a recursive private preconditioning subroutine that utilizes the recent work on private mean estimation [Hopkins et al., 2022]. Our approximate DP algorithms are based on a substantial upgrade of the method of stabilizing convex relaxations introduced in [Kothari et al., 2022].
translated by 谷歌翻译
In this work, we demonstrate the offline FPGA realization of both recurrent and feedforward neural network (NN)-based equalizers for nonlinearity compensation in coherent optical transmission systems. First, we present a realization pipeline showing the conversion of the models from Python libraries to the FPGA chip synthesis and implementation. Then, we review the main alternatives for the hardware implementation of nonlinear activation functions. The main results are divided into three parts: a performance comparison, an analysis of how activation functions are implemented, and a report on the complexity of the hardware. The performance in Q-factor is presented for the cases of bidirectional long-short-term memory coupled with convolutional NN (biLSTM + CNN) equalizer, CNN equalizer, and standard 1-StpS digital back-propagation (DBP) for the simulation and experiment propagation of a single channel dual-polarization (SC-DP) 16QAM at 34 GBd along 17x70km of LEAF. The biLSTM+CNN equalizer provides a similar result to DBP and a 1.7 dB Q-factor gain compared with the chromatic dispersion compensation baseline in the experimental dataset. After that, we assess the Q-factor and the impact of hardware utilization when approximating the activation functions of NN using Taylor series, piecewise linear, and look-up table (LUT) approximations. We also show how to mitigate the approximation errors with extra training and provide some insights into possible gradient problems in the LUT approximation. Finally, to evaluate the complexity of hardware implementation to achieve 400G throughput, fixed-point NN-based equalizers with approximated activation functions are developed and implemented in an FPGA.
translated by 谷歌翻译
Recently, automated co-design of machine learning (ML) models and accelerator architectures has attracted significant attention from both the industry and academia. However, most co-design frameworks either explore a limited search space or employ suboptimal exploration techniques for simultaneous design decision investigations of the ML model and the accelerator. Furthermore, training the ML model and simulating the accelerator performance is computationally expensive. To address these limitations, this work proposes a novel neural architecture and hardware accelerator co-design framework, called CODEBench. It is composed of two new benchmarking sub-frameworks, CNNBench and AccelBench, which explore expanded design spaces of convolutional neural networks (CNNs) and CNN accelerators. CNNBench leverages an advanced search technique, BOSHNAS, to efficiently train a neural heteroscedastic surrogate model to converge to an optimal CNN architecture by employing second-order gradients. AccelBench performs cycle-accurate simulations for a diverse set of accelerator architectures in a vast design space. With the proposed co-design method, called BOSHCODE, our best CNN-accelerator pair achieves 1.4% higher accuracy on the CIFAR-10 dataset compared to the state-of-the-art pair, while enabling 59.1% lower latency and 60.8% lower energy consumption. On the ImageNet dataset, it achieves 3.7% higher Top1 accuracy at 43.8% lower latency and 11.2% lower energy consumption. CODEBench outperforms the state-of-the-art framework, i.e., Auto-NBA, by achieving 1.5% higher accuracy and 34.7x higher throughput, while enabling 11.0x lower energy-delay product (EDP) and 4.0x lower chip area on CIFAR-10.
translated by 谷歌翻译